Cisco SDWAN Demo
Cisco SDWAN Demo
Expert-Led Live Training | 27th April 2025 @04 PM IST
Day
Hr
Min
Sec
Join Now
USD ($)
$
United States Dollar
India Rupee

Operators, List and Tuple Methods in Python

Created by Vanshika Sharma in Articles 6 Mar 2025
Share
«Basics of Ansible: Playbooks and ...

Python is a versatile and beginner-friendly programming language that offers a wide range of tools for data manipulation. Among these tools, operators, lists, and tuples are fundamental concepts that every Python programmer must understand.

Operators allow you to perform operations on variables and values, while lists and tuples are data structures used to store collections of items.  

In this article, we will explore the different types of operators in Python, how to work with lists and tuples, and the methods associated with them.

By the end of this article, you will have a solid understanding of these concepts and how to use them effectively in your Python programs.

Operators in Python 

Operators are symbols or keywords that perform operations on variables and values. Python supports a wide range of operators, including arithmetic, comparison, logical, assignment, bitwise, membership, and identity operators. 

Arithmetic Operators

Arithmetic operators are used to perform basic mathematical operations like addition, subtraction, multiplication, and division. 


Operator Description Example
+ Addition a + b
- Subtraction a - b
* Multiplication a * b
/ Division a / b
% Modulus (remainder) a % b
** Exponentiation a ** b
// Floor Division a // b

Example: 


a = 10 

b = 3 

print(a + b)  # Output: 13 

print(a - b)  # Output: 7 

print(a * b)  # Output: 30 

print(a / b)  # Output: 3.333... 

print(a % b)  # Output: 1 

print(a ** b) # Output: 1000 

print(a // b) # Output: 3 

Comparison Operators 

Comparison operators are used to compare two values. They return True or False based on the comparison. 


Operator Description Example
== Equal to a == b
!= Not equal to a != b
> Greater than a > b
< Less than a < b
>= Greater than or equal to a >= b
<= Less than or equal to a <= b

Example: 


a = 10 

b = 20 

print(a == b)  # Output: False 

print(a != b)  # Output: True 

print(a > b)   # Output: False 

print(a < b)   # Output: True 

print(a >= b)  # Output: False 

print(a <= b)  # Output: True 

Logical Operators 

Logical operators are used to combine conditional statements. They include and, or, and not. 


Operator Description Example
and Returns True if both statements are true. a and b
or Returns True if at least one statement is true. a or b
not Reverses the result. not a

Example: 


a = True 

b = False 

print(a and b)  # Output: False 

print(a or b)   # Output: True 

print(not a)    # Output: False 

Assignment Operators 

Assignment operators are used to assign values to variables. They can also perform operations while assigning. 


Operator Description Example
= Assign a = b
+= Add and assign a += b
-= Subtract and assign a -= b
*= Multiply and assign a *= b
/= Divide and assign a /= b
%= Modulus and assign a %= b
**= Exponent and assign a **= b
//= Floor divide and assign a //= b

Example:


a = 10 

b = 2 

a += b  # Equivalent to a = a + b 

print(a)  # Output: 12 

Bitwise Operators 

Bitwise operators are used to perform operations on binary numbers. 


Operator Description Example
& AND a & b
| OR a | b
^ XOR a ^ b
~ NOT ~a
<< Left shift a << b
>> Right shift a >> b

Example: 


a = 10  # Binary: 1010 

b = 4   # Binary: 0100 

print(a & b)  # Output: 0 

print(a | b)  # Output: 14 

print(a ^ b)  # Output: 14 

print(~a)     # Output: -11 

print(a << 1) # Output: 20 

print(a >> 1) # Output: 5 

Membership Operators 

Membership operators are used to test if a value exists in a sequence (e.g., list, tuple, string). 


Operator Description Example
in Returns True if value exists. a in b
not in Returns True if value does not exist. a not in b

Example: 


my_list = [1, 2, 3, 4, 5] 

print(3 in my_list)      # Output: True 

print(6 not in my_list)  # Output: True 

Identity Operators 

Identity operators are used to compare the memory locations of two objects. 


Operator Description Example
is Returns True if both objects are the same. a is b
is not Returns True if both objects are not the same. a is not b

Example: 


a = [1, 2, 3] 

b = [1, 2, 3] 

c = a 

print(a is b)      # Output: False 

print(a is c)      # Output: True 

print(a is not b)  # Output: True 

Lists in Python 

Lists are one of the most commonly used data structures in Python. They are ordered, mutable (changeable), and can store elements of different data types. 

Creating Lists 

You can create a list by enclosing elements in square brackets []. 


my_list = [1, 2, 3, "Python", 3.14] 

Accessing List Elements 

You can access elements in a list using their index. Python uses zero-based indexing. 


print(my_list[0])  # Output: 1 

print(my_list[3])  # Output: Python 

List Slicing 

You can extract a portion of a list using slicing. 


print(my_list[1:4])  # Output: [2, 3, "Python"] 

List Methods 

Lists come with a variety of built-in methods for manipulation. 


Method Description Example
append() Adds an element at the end. my_list.append(4)
extend() Adds elements from another list. my_list.extend([5, 6])
insert() Inserts an element at a specific index. my_list.insert(1, 1.5)
remove() Removes the first occurrence of an element. my_list.remove(3)
pop() Removes and returns the element at the given index. my_list.pop(1)
clear() Removes all elements from the list. my_list.clear()
index() Returns the index of the first occurrence of an element. my_list.index("Python")
count() Returns the number of occurrences of an element. my_list.count(3)
sort() Sorts the list in ascending order. my_list.sort()
reverse() Reverses the order of the list. my_list.reverse()
copy() Returns a shallow copy of the list. new_list = my_list.copy()

List Comprehensions 

List comprehensions provide a concise way to create lists. 


squares = [x**2 for x in range(10)] 

print(squares)  # Output: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Tuples in Python 

Tuples are similar to lists but are immutable, meaning they cannot be modified after creation. 

Creating Tuples 

You can create a tuple by enclosing elements in parentheses (). 


my_tuple = (1, 2, 3, "Python", 3.14) 

Accessing Tuple Elements 

You can access tuple elements using indexing, just like lists. 


print(my_tuple[0])  # Output: 1 

print(my_tuple[3])  # Output: Python 

Tuple Methods 

Tuples have fewer methods than lists due to their immutability. 


Method Description Example
count() Returns the number of occurrences of an element. my_tuple.count(3)
index() Returns the index of the first occurrence of an element. my_tuple.index("Python")

When to Use Tuples 

Tuples are ideal for storing data that should not change, such as coordinates or constant values. 

Key Differences Between Lists and Tuples 


Feature List Tuple
Mutability Mutable Immutable
Syntax Uses [] Uses ()
Performance Slightly slower Faster
Use Case Dynamic data Fixed data

Practical Examples 

Example 1: Using Lists for Data Manipulation 


# Create a list of numbers 

numbers = [1, 2, 3, 4, 5] 

# Add a new number 

numbers.append(6) 

# Remove the number 3 

numbers.remove(3) 

# Sort the list 

numbers.sort() 

print(numbers)  # Output: [1, 2, 4, 5, 6] 

Example 2: Using Tuples for Immutable Data 


# Create a tuple of coordinates 

coordinates = (10.0, 20.0) 

# Access elements 

print(coordinates[0])  # Output: 10.0 

# Attempt to modify (will raise an error) 

# coordinates[0] = 15.0  # TypeError: 'tuple' object does not support item assignment 


Understanding Ansible YAML Basics»
Vanshika Sharma

More... | Author`s Bog | Book a Meeting

Related Articles

#Explore latest news and articles

Why is Network Automation Important? 12 Nov 2024

Why is Network Automation Important?

Discover the crucial role of network automation for network engineers. Learn why automation is essential for efficiency and competition in the networking field.
Understanding Ansible YAML Basics 17 Mar 2025

Understanding Ansible YAML Basics

Learn the fundamentals of YAML with a focus on basic syntax. This YAML basics tutorial is perfect for beginners, providing a step-by-step guide to YAML.
Learn Python from Scratch: Begin Here 6 Mar 2025

Learn Python from Scratch: Begin Here

Explore Python with our guide on learning Python from scratch. Master the fundamentals and elevate your programming skills step by step.

FAQ

List: Mutable, can be modified after creation. Tuple: Immutable, cannot be modified after creation.
Yes, you can use operators like + for concatenation and * for repetition.
Use indexing, e.g., my_list[0] or my_tuple[0].
Yes, use tuple(my_list) to convert a list to a tuple and list(my_tuple) to convert a tuple to a list.

Comments (0)

Share

Share this post with others

Contact learning advisor

Captcha image